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Abstract

Recently, attention mechanisms have been explored with ConvNets, both across
the spatial and channel dimensions. However, from our knowledge, all the ex-
isting methods devote the attention modules to capture local interactions from a
uni-scale. In this paper, we propose a Previous Knowledge Channel Attention
Module(PKCAM), that captures channel-wise relations across different layers to
model the global context. Our proposed module PKCAM is easily integrated into
any feed-forward CNN architectures and trained in an end-to-end fashion with a
negligible footprint due to its lightweight property. We validate our novel architec-
ture through extensive experiments on image classification and object detection
tasks with different backbones. Our experiments show consistent improvements in
performances against their counterparts.

1 Introduction

Over the years, CNN architectures have evolved with many ideas to better deal with spatial image
features. Moreover, their localized nature makes such features lack the global view of the image.
Deeper architectures emerged that stack multiple convolution layers, known with different names;
backbone, bottleneck, feature extractor, or encoder. The main feature of such architectures is
their ability to cover spatial features at multiple scales. As we go deeper, the feature maps get
smaller, while their content represents a wider region in the space, which gets us closer to better
semantics of the image contents (22). With the emergence of AlexNet (18), many kinds of research
investigate to further improve the performance of deep CNNs. (30) (13) (32) (34) (31) have sought
to strengthen the CNNs by making it deeper and deeper as they have shown that increasing the
depth of a network could significantly increase the quality of the learned representations. Many
researchers are continuously investigating to further improve the performance of deep CNNs by
incorporating attention mechanisms to exploit its ability to cover the relationship between the learned
spatial features.

Attention modules, in general, are designed to suppress noise while keeping useful information
by refining the learned features using attention scaling. By quoting from the human perception
process (24) where the high-level information is used in guiding the bottom-up learning process
by capturing more sophisticated features while disregarding irrelevant details. Human perception
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and visual attention (1) (7) (24) (8) is enhanced by top-down stimuli and non-relevant neurons will
be suppressed in feedback loops. Referencing to human visual system, various different attention
mechanisms (2) (38) (40) (35) (36) have been explored and integrated into deep CNNs. Attention
mechanisms were introduced in the context of CNNs to capture the relations between features, either
across the spatial dimension as in (3) (14) ,or across channel-wise dimension as in (38) (2) (15)
(20) (37) or across both dimensions as in (26) (39) (9) (36) (21) (29) (4). Although these attention
methods have achieved higher accuracy than their counterpart baselines which do not invoke any
attention mechanisms in their architectures, they often bring higher model complexity and exploit
only the current feature map while refining it, that’s why we call it local attention mechanisms.

Exploiting previous knowledge has been applied to image classification (16) (17), image segmentation
(28), tracking (23), and human pose estimation (25) where they obtain enhanced performance.
DenseNets (16) encourage feature reuse by connecting each layer to every other layer in a feed-
forward fashion. U-Net (28) consists of two paths, which are contracting path to capture context and a
symmetric expanding path that enables precise localization, where feature reuse is introduced through
using skip connection between two paths. Driven by the significance of employing feature reuse
while learning different tasks (33) (16) (17) (5) (23) (25), a question arises: How can one incorporate
previous knowledge aggregation while learning channel attention more efficiently?

To answer this question, we introduce PKCAM, a novel feature recalibration module based on
channel attention, which improves the quality of the representations produced by a network using
the global information to selectively emphasize informative features and suppress less useful ones.
In contrast to the aforementioned attention mechanisms, our global context aware attention block
obtains additional inputs from all preceding attention blocks, that have the same depth, and passes
on its refined feature-maps to all subsequent blocks, creating global awareness from exploiting
previous knowledge aggregation from earlier layers that can capture fine-grained information which is
useful for precise localization while attending to features from earlier layers that can encode abstract
semantic information, which is robust to target appearance changes.

The contributions of this paper are summarized as follows:

• We propose a simple and effective attention module, PKCAM, which can be integrated
easily with any CNNs and applied across all it’s blocks due to the lightweight computation
of our novel architecture.

• We verify the effectiveness and robustness of PKCAM throughout extensive experiments
with various baseline architectures on KITTI dataset.

• Through detailed analysis along with ablation studies, we examine the internal behavior and
validity of our method.

2 Related work

.
Table 1: Comparison of channel attention module by projecting each channel mechanism according
to the abstract global context modeling skeleton that was introduced by GCNet [1] in Figure 4(a).

Methods Context Modeling Transform Fusion

SE (15) Yc = GAP (X)(1) Z = σ(F.Cc(Relu(F.C c
r
(Yc))))(2) F = Z �X(3)

ECA (37) Yc = GAP (X)(4) Z = σ(C1Dk(Yc)) F = Z �X (5)
SRM (20) Yc∗d = concat[GAP (X), SP (X)](6) Z = σ(

∑
d(Yc∗d �Wc∗d)) (7) F = Z �X (8)

GC (2) Yc = XC∗HW ⊗ S.M.(C1Dk(X))(9) Z = F.Cc(Relu(F.C c
r
(Yc)))(10) F = Z +X (11)

The basic channel attention module (15) (2) (38) (20) (37) (10) aims at strengthening the output
features of one convolution block, X ∈ RH×W×C , where W, H and C are width, height and channel
dimension. Table 1 projects each channel mechanism according to the abstract global context
modeling skeleton that was introduced by GCNet (2) in Figure 4(a). The abstract global context
modeling framework (2) consists of three main blocks which are context modeling, transform and
fusion blocks.

SE-Net (15) and ECA-Net (37) squeeze the spatial dimension of the output features of one con-
volution block X via aggregating it through channel-wise global average pooling (GAP), where
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Figure 1: Diagram of our Previous Knowledge Channel Attention Module (PKCAM). Given a
R aggregated features, PKCAM generates global aware channel weights by performing a fast 1D
convolution of sizeR, accompanied by another 1D convolution, which represents global cross channel
interaction, then fused with the standard local cross channel interaction.

Yc = 1
WH

∑W,H
i=1,j=1Xij , then SE-Net use non-linear transformation using two fully connected

layers with a dimensionality reduction propriety to control the model complexity expansion, the
transformation block is called excitation. ECA-Net (37) analyzing effects of dimensionality reduction
at the SE-Net transformation block that shows that while dimensionality reduction can reduce model
complexity, it destroys the direct correspondence between the channel and its weight. Therefore ECA-
Net employs a more efficient transformation function as shown in Table 1, where a one-dimensional
convolution layer (C1D) is used which only involves k parameters that guarantees both efficiency
and effectiveness. SE-Net (15) and ECA-Net (37) opt to employ a simple gating mechanism with
a sigmoid activation function σ that produces a channel weights Z. The third block of the abstract
global context modeling framework (2) is fusing the channel weights Z with the original feature
map X to produce a recalibrated feature map F . Both SE-Net (15) and ECA-Net (37) are using
element-wise multiplication operation to recalibrate the original feature map X according to the
learned channel weights Z.

SRM (20) adaptively squeezes the spatial dimension for the input feature map X based on the
style of an image via a channel-independent style pooling operator by adopting the channel-wise
statistics—average and standard deviation—of each feature map as style features (i.e. d = 2).
Accordingly SRM context modeling block producing style features Y ∈ RC×d The style features Yc∗d
are converted into channel-wise style weights Z by the transformation block that consists of a style
integration operator as shown in Table 1. The style weights Z are supposed to model the importance
of the styles associated with individual channels to emphasize or suppress them accordingly. In line
with SE-Net (15) and ECA-Net (37), SRM (20) adopts the same fusion mechanism by simply employ
element-wise multiplication operation to recalibrate the original feature map X according to the
learned channel-style weights Z

GCNet (2) adopt the same transformation block from SE-Net (15) to produce channel weights Z while
proposing a new context and fusion blocks. Given an input feature map X GCNet (2) squeeze the
channel dimension then a query-independent attention map is explicitly used for all query positions
to learn the spatial relation between pixels, producing Y .

3 Methodology

In this section, we first demonstrate an abstracted overview of our PKCAM. Then, we demonstrate
the motivations to adopt the feature reuse concept via exploiting the previous knowledge to create
a global aware attention block (i.e., PKCAM). In addition, we develop a method to efficiently fuse
both local and global cross-channel interaction modules, and finally show how to integrate it for an
arbitrary CNN architecture.
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3.1 Previous Knowledge Channel Attention Module

3.1.1 Abstracted Overview of our PKCAM

By scrutinizing the aforementioned channel attention techniques, previous knowledge aggregation
was not explored from the channel attention module perspective. Therefore we studied the previous
knowledge cross-channel interaction by proposing PKCAM.

Fig.1 demonstrates our PKCAM, which exploits both local and global feature maps, through fusing
two parallel attention paths while recalibrating the current feature map, where the first one consists
of the local cross-channel interaction (LCCI) module that models channel-wise relationships of the
aggregated feature map. We call this module local as it is operating on the current feature map
only. The second path, which we call the global path, consists of two stacked modules: previous
knowledge aggregation (PKA) and global cross channel interaction (GCCI). The PKA module covers
the channel interactions across different preceding aggregated feature maps, while the GCCI module
utilizes the refined features produce by the PKA module to model channel-wise relationships in a
computationally efficient manner. Both LCCI and GCCI modules could be any one of the on-the-shelf
channel attention techniques which are studied in Section 2.

3.1.2 Previous Knowledge Aggregation Block

In contradiction to the aforementioned channel attention techniques which relies on the current output
of an arbitrary CNN block, our proposed PKCAM exploits both the current CNN block output ,
x0 ∈ RH0×W0×C0 , and a range of earlier CNN blocks output , Xp = [x1, x2, ..., xR], where R is the
coverage region that delimits how many previous CNN blocks output will be consolidated along side
the current CNN block, x1 ∈ RH1×W1×C1 , x2 ∈ RH2×W2×C2 , and xR ∈ RHR×WR×CR .

In general, the earlier features Xp have different channel dimensions, as the conventional is as
we go deeper the depth is increased. Therefore, the first operation in our Previous Knowledge
Aggregation(PKA) block is aligning the channel dimension among different CNN blocks. As
C0 ≥ C1 ≥ C2 ≥ CR, aligning operation can be done be learnable upsampling techniques or
a simple repeating operation to align with the channel dimension of the current CNN block C0,
producing channel aligned feature maps, x′0 ∈ RH0×W0×C0 , x′1 ∈ RH1×W1×C0 , x′2 ∈ RH2×W2×C0 ,
and x′R ∈ RHR×WR×C0 .

Analogous to aligning the channel dimensions, the spatial dimensions; H and W , is aligned
through squeeze operation by adapting the general global average pooling equation as follows,
X̃ = 1

RWH

∑R
k=1

∑W
i=1

∑H
j=1Xkij , where X̃ ∈ RR×1×1×C0 and represents the squeezed feature

maps from the channel aligned aggregated feature maps x′i, where i = 0, 1, . . . , R, producing
X̃ = [x̃0, x̃1, ..., x̃R], x̃0 ∈ R1×1×C0 , x̃1 ∈ R1×1×C0 and x̃R ∈ R1×1×C0 .

Previous knowledge cross-channel attention Given the aggregated feature X̃ , previous knowl-
edge cross-channel attention can be learned by Y = f(X̃), where Y ∈ R1×1×C0 , f(X̃) = W ′X̃ ,
and W ′ could take one of the following forms,

W
′
=



W
′

1 =

 W
′

1,1 · · · W1,RC0

...
. . .

...
W

′

RC0,1
· · · W

′

RC0,RC0



W
′

2 =


W

′

1,1 0 · · · 0

0 W
′

2,2 · · · 0
...

...
. . .

...
0 0 · · · W

′

RC0,RC0


(12)

where W ′1 is a RC0 × RC0 parameter matrix which learns previous knowledge interaction in
conjunction with cross-channel interaction. In contrast W ′2 is a 1 × RC0 parameter matrix which
learns previous knowledge interaction and channel interaction neglecting the cross channel relations.
The key difference between W ′1 and W ′2 is that W ′1 considers previous knowledge cross-channel
interaction while W ′2 does not, leading W ′1 to be more complex than W ′2. Interpreting Eq. 12 to
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neural networks W ′1 and W ′2 can be regarded as a fully connected layer and depth-wise separable
convolution layer respectively. However, obviously from Eq. 12, W ′1 and W ′2 have a tremendous
number of parameters, driving to high model complexity, especially for large channel numbers as
mainly C0 >> R.

Therefore, we divide learning the previous knowledge cross-channel interaction into two sub-modules
as shown in Fig. 1, learning previous knowledge interaction, and exploiting the cross-channel
interaction. Consequently, in contrast to Eq. 12, f(X̃) is splitted into two cascaded functions, f1(X̃)

and f2(X̃), where f1(X̃) is responsible to learn the previous knowledge channel interaction and
f2(X̃) is responsible to learn the cross-channel interaction.

Previous knowledge channel interaction Previous knowledge channel attention can be learned
by Eq. 13, where for each channel the global information is aggregated using simple summation
operation, where no learnable parameters are invoked.

Y = f1(X̃) =

C0∑
L=1

R∑
K=1

X̃LK (13)

A possible compromise between Eq. 12 and Eq. 13 is Eq. 14, where a tiny number of parameters are
used whereas W

′ ∈ R1×1×R compared to the tremendous number of parameters that are invoked
in Eq. 12 while learning the previous knowledge channel interaction. From the perspective of the
convolution neural network, Eq. 14 could be readily interpreted to a 1-D convolution layer with
kernel k = W̃ .

Y = f1(X̃) =

C0∑
L=1

W
′
X̃L (14)

Global cross-channel interaction Global cross-channel interaction could be learned by adopting
one of the local channel attention modules (15) (2) (38) (20) (37) (10) producing Z1 = f(Y )
where Z1 ∈ R1×1×C0 . (37) (10) (15) (2) (38) (20) refer to the term global as they are taking into
consideration the whole spatial dimension from the fed features using GAP - Global Average Pooling.
In contrast we refer to the term global as previous knowledge aggregation.

3.1.3 Combining global and local cross-channel interaction

PKCAM contains two cross-channel attention modules as shown in Figure 1, one learns the cross-
channel interaction from the global feature map, while the other one learns the cross-channel
interaction from the local feature map. For both modules ECA-Net (37) is adopted empirically based
on Section 4.1.2. Finally, the current convolution output x0 is recalibrated by the learned scales S,
following Eq. 15, where F ∈ R1×1×C0 and S ∈ R1×1×C0 is obtained by fusing the global learned
scales Z1 with the local learned scales Z2, following Eq. 16.

F = x̃
W̃
� (15)

S = φ(Z) : Z = Concat(Z1, Z2) (16)

where φ(Z) represents the mapping function from the global and local scales to the final scales
S. The simplest mapping is summing both local and global scales as shown in Eq. 17, where no
learnable parameters are included. We called this, a shallow fusion mechanism, as a fixed mapping is
followed regardless of the feature map’s structure and nature.

φ(Z) =

C0∑
L=1

2∑
K=1

ZLK (17)

Other possible mapping function is considering the full cross-channel interaction between local
and global scales, which could be regarded as a fully connected layer with tremendous number of
parameters. But we waive this costly full cross-channel interaction to abide by our objective which
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Figure 2: Illustration for the general idea of integrating PKCAM Module into an arbitrary Deep
CNNs alongside local channel attention (LCA) module.

Table 2: Comparison of the various ways to integrate PKCAM into CNNs using the ImageNet dataset.
Top-1 accuracy is reported.

Integration type All blocks Last block

Resnet-18 71.1 71.15
Resnet-34 74.25 74.43
Resnet-50 77.50 77.56

aims to learn channel attention more efficiently in a lightweight manner besides avoiding the shallow
summation fusion mechanism Eq. 17, therefore Eq. 18 can be considered as a compromised mapping
function, where we only concern about the channel interaction between each local channel and its
counterpart in the global scales, which could be achieved easily using a 1-D convolution layer with
kernel size equals two.

φ(Z) =
[
W 1

Z W 2
Z

]
⊗
[
Z1 · · · ZC0

1

Z2 · · · ZC0
2

]
(18)

3.1.4 Integrating PKCAM Module into Deep CNNs

Figure 2 illustrate a general way for integrating PKCAM into an arbitrary CNN architecture, where
PKCAM was integrated into the last CNN block for each stage alongside arbitrary local channel
attention (LCA) module for the rest of the blocks. Due to the lightweight topology of our PKCAM, it
could be integrated to each block, where LCA is totally replaced. Figure 3 demonstrate a pseudo
code for our PKCAM to show how easily it could be integrated to any CNN architecture.

4 Experiments

In this section, we perform controlled ablation experiments to settle on the best design for our
proposed module and assess its sub-modules. Then we evaluate the performance of the proposed
Previous Knowledge Attention module, on a series of benchmark datasets across different tasks
including Tiny-ImageNet (19), and ImageNet (6) for the classification task, and KITTI (11) for
detection. Finally, We conduct empirical experiments that probe the robustness of the representations
learned by PKCAM, compared to convolutional baselines and other attention mechanisms.

4.1 Ablation studies and analysis

We have conducted three ablations studies to settle on the best architecture design and analyze the
effectiveness of each component in our PKCAM. The first one investigating the different approaches
for previous knowledge channel interaction that are discussed in Section 3.1.2. Then, we assess
the choice of basic attention modules that are used in the local and global cross channel interaction
modules as shown in Fig. 1. Finally, we demonstrate the effectiveness of our proposed previous
knowledge cross-channel interaction module compared to the naive local cross-channel interaction.
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Figure 3: Pseudo code for our PKCAM.

4.1.1 Global and local cross-channel interaction

We have investigated empirically the different global channel interaction techniques that were
described in detail in Section3.1.2, besides examined the various global-local fusion mechanisms
that combine the global and the local cross-channel learned representations which were cover in
Section3.1.3. To cover the whole possible combinations of each sub-module, nine experiments are
conducted for each adopted backbone, which are ResNet-18 (13), ResNet-34 (13), ResNet-50 (13).
All experiments in Table 3 are conducted using the Tiny-ImageNet dataset (19), where the same
data augmentation and hyper-parameter settings in (15) are adopted. Input images are randomly
cropped to 64× 64 with random horizontal flipping. Stochastic gradient descent (SGD) with weight
decay of 1e−4, the momentum of 0.9, and mini-batch size of 32 is used. Models are trained for
100 epochs from scratch, using the weight initialization strategy described in (12) and the initial
learning rate is set to 0.1 and decreased by a factor of 10 every 30 epochs. As shown in Table3
exploiting the previous knowledge channel interaction through 1-D Conv. layer by following Eq.14,
and fuse the global and local scales by following Eq.18, is the best compromise to solve the paradox
of performance and complexity trade-off, where it shares almost the same model complexity (i.e.,
network parameters and FLOPs) with the original ResNet while at the same time it achieves the
best accuracy for ResNet-50 and comparable accuracy for ResNet-18 and ResNet-34 compared to
fusing the global and local scales using fully connected layer which invokes a tremendous number
of parameters. Based on the aforementioned results in Table 3, our novel approach follows the
compromised combination while exploiting the previous knowledge cross channel interaction by
following Eq.14 to capture the previous knowledge channel interaction and Eq.18 to fuse the global
and local learned representations.
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Table 3: Comparison of different previous knowledge Aggregation(PKA) techniques on the horizontal
dimension, where 1-D Conv., Sum and FC stands for one dimensional convolution layer Eq.14,
summation Eq.13, and fully connected layer Eq.12 respectively. While the vertical dimension
compares various global-local fusion mechanisms, where 1-D Conv., Sum and FC stands for one
dimensional convolution layer Eq.18, summation Eq.17, and fully connected layer respectively.

Fusion
MSCI 1-D

Conv. Sum FC 1-D
Conv. Sum FC 1-D

Conv. Sum FC

ResNet-18 ResNet-34 ResNet-50

Acc. 55.70 55.28 54.63 56.94 56.26 56.52 57.89 56.18 56.41

1-D
Conv. #.P (M) 10.749 10.749 11.413 20.389 20.389 23.049 22.824 22.824 65.387

GFLOPs 2.075 2.075 2.076 4.329 4.329 4.331 4.878 4.878 4.878

Acc. 54.96 55.10 54.24 56.00 56.02 55.40 57.14 56.55 57.16?

Sum #.P (M) 10.749 10.749 11.413 20.389 20.389 23.049 22.824 22.824 65.387

GFLOPs 2.075 2.075 2.076 4.329 4.329 4.331 4.878 4.878 4.878

Acc. 56.01 55.35 54.41 56.20 56.38 56.64 57.53 56.69 56.95

FC #.P (M) 11.413 11.413 12.077 22.124 22.124 24.784 50.574 50.574 93.137

GFLOPs 2.076 2.076 2.076 4.330 4.330 4.333 4.906 4.906 4.947

Table 4: Comparison of the various basic attention modules in our proposed module PKCAM using
the Tiny-ImageNet dataset.

Basic Attention Module SE SRM ECA

Resnet-18 54.07 55.10 55.70
Resnet-34 56.61 56.52 56.94
Resnet-50 57.42 57.12 57.89

4.1.2 Basic attention module

We next assess the choice of basic attention modules that are used in the local and global cross channel
interaction modules as shown in Fig.1. Three channel attention mechanisms are evaluated on the Tiny-
Imagenet dataset (19), including SE-Net (15), SRM (20), and ECA-Net (37). As shown in Table 4
ECA-Net achieves the best accuracy across different ResNet backbones. However, building up our
PKCAM using other channel attention mechanism boost the accuracy compared to their original
results. For example, SRM using ResNet-18 as a backbone achieves 53.39% while our PKCAM
module builds upon SRM achieves 55.1%.

4.1.3 Local Vs. global cross channel interaction

We conduct experiments to validate the effectiveness of our proposed global cross-channel interaction
module by comparing it with the naive local cross-channel interaction. Experiments at Table 5
are conducted using the Tiny-Imagenet dataset (19) and ECA-Net (37) as basic channel module as
discussed at Section 4.1.2. Table 5 shows that the global cross-channel interaction module alone
achieves better accuracy than the local one, and combining both of them achieves the best accuracy.
Results that are shown in Table 5 suggest that the recalibration scales learning process will benefit
from global information.

Table 5: Showing effectiveness of previous knowledge cross-channel interaction module using the
Tiny-ImageNet dataset.

Local Vs. Global Local Global Both

Resnet-18 53.76 54.82 55.70
Resnet-34 55.66 56.18 56.94
Resnet-50 56.59 56.89 57.89
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Table 6: Comparisons with state-of-the-art attention modules on ImageNet in terms of the number of
parameters (#P.) in millions, GFLOPs, top-1, and top-5 accuracy. Top-1 relative improvement results
is reported between parentheses w.r.t SENet improvement over Vanilla Resnet.

Methods #.P.(M) GFLOPs Top-1 Top-5 #.P.(M) GFLOPs Top-1 Top-5 #.P.(M) GFLOPs Top-1 Top-5

ResNet-18 ResNet-34 ResNet-50

ResNet (13) 11.14 1.699 70.42 89.45 20.78 3.427 73.31 91.40 24.37 3.86 75.2 92.52
SENet (15) 11.23 1.700 70.59 89.78 20.93 3.428 73.87 91.65 26.77 3.87 76.71 93.38
CBAM (39) 11.23 1.700 70.73(182%) 89.91 20.94 3.428 74.01(125%) 91.76 26.77 3.87 77.34(141%) 93.69
ECA (37) 11.14 1.699 70.78(211%) 89.92 20.78 3.427 74.21(160%) 91.83 24.37 3.86 77.48(151%) 93.68
PKCAM 11.14 1.699 70.98(329%) 90.12 20.78 3.427 74.43(200%) 91.87 24.37 3.86 77.56(156%) 93.70

Table 7: Comparisons with state-of-the-art attention modules on KITTI-RGB in terms of mAP using
YOLOV3 on Resnet-18 and 34 backbones.

Vanilla SE ECA CBAM BAM SRM PKCAM

R-18 57.87 59.32 58.55 57.90 59.61 59.20 59.66
R-50 64.19 65.08 64.34 64.18 65.10 64.82 65.21

4.2 Image classification on ImageNet

In this section, we evaluate the performance of proposed PKCAM network on ImageNet (6). All the
classification experiments follows the same training procedure, where the same data augmentation
and hyper-parameter settings in (15) are adopted. Models are trained for 100 epochs from scratch,
using the weight initialization strategy described in (12) and the initial learning rate is set to 0.1 and
decreased by a factor of 10 every 30 epochs. Stochastic gradient descent (SGD) with weight decay of
1e−4, the momentum of 0.9, and mini-batch size of 256 for ImageNet (6). The evaluation metrics
incorporate both efficiencies (i.e., network parameters (#P.) in millions, and floating-point operations
per second (FLOPs) in Gigas) and effectiveness (i.e., Top-1 accuracy).

ImageNet LSVRC 2012 dataset (6), which contains 103 classes with 1.2 million training images,
50 × 103 validation images, and 100 × 103 test images. The evaluation is measured on the non-
blacklist images of the ImageNet LSVRC 2012 validation set. A 224×224 crop is randomly sampled
from an image or its horizontal flip, with the per-pixel RGB mean value subtracted.

We compare our PKCAM module with several state-of-the-art attention methods using ResNet-18
and ResNet-34 backbones (13) on ImageNet. Efficiency and effectiveness are measured, and the
results are reported in Table 6 from their original papers. We adopt the same training setup as (13)
(15) for fair comparison. Results show that our proposed PKCAM achieves the best accuracy besides
be the lightest model compared to other attention modules (15) (39). Top-1 relative improvement
results is reported between parentheses w.r.t SENet improvement over Vanilla Resnet.

4.3 Object detection

KITTI-RGB (11) consists of 7,481 training images and 7,518 test images, comprising a total of 80,256
labeled objects of eight different classes. Each image has 3 RGB color channels and pixel dimensions
1242× 375 which is resized to 224× 224. We follow the same training setup as mentioned at Section
4.2. As shown in Table 7, PKCAM considerably improves the accuracy more than other attention
modules compared to the baseline (13). YOLOV3 (27) detector is used.

5 Conclusion

In this paper, we concentrate on determining an effective channel attention module with low model
complexity. To this end, we propose efficient channel attention (PKCAM). Because of the lightweight
computation of the PKCAM block, it can be integrated into all modern CNN architectures across
the whole layers and trained end-to-end. While most previous works utilized uni-scale features,
PKCAM is designed to employ the ability of global information while recalibrating feature maps.
Our experiments demonstrate that simply inserting PKCAM into standard CNN architectures boosts
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the performance across different tasks. Furthermore, we verify the robustness of the representations
learned by PKCAM and its generalization ability via zero-shot experiments to rotated images.
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